Basaveshwar Engineering College (Autonomous), Bagalkot

Syllabi of Open Electives for 6th semester B. E.

(offered during Even Semester 2021-22)

Sub. Code	UAU641N	Subject	Vehicular Systems
Offering	Automobile Engineering	Faculty	Prof. P. Nagaraja
Department			
Brief description	on of the course:	1	
This subject broa	adly covers conventional and cont	temporary a	spects of Automobile Engineering. The
detail working pr	inciple of engines, clutches and b	rakes. This	includes transmission systems, braking
systems and su	spension systems etc. The prelim	ninary aspec	cts of global warming, electric vehicles
and automotive e	emissions are also covered.		
	Unit I		10 Hours
GENERAL: Intro	duction, electric vehicles, hybrid ve	ehicles, elec	tronics in automobiles; sensors, ECU.
Automotive emis	sions.		
VEHICLE LAYO	JTS:		
Introduction, diffe	erent types of layouts, front engine	front wheel	drive, front engine rear wheel drive,
rear engine rear	wheel drive, four-wheel drive, all-w	vheel drive.	
ENGINES:			
Combustion in S	I Engines; ignition limits, stages of	combustion	, detonation, combustion chambers.
Combustion in C	I Engines; stages of combustion, o	delay period	, diesel knock, combustion
chambers.Turbo	-charging and dual fuel engines.		
	Unit II		10 Hours
CONTROL SYS	TEMS:		
BRAKES: classif	ication, hydraulic brakes, mechani	cal brakes,	disc brakes, drum brakes, brake fluids,
requirements, bleeding of brakes, air brakes, vacuum servo brakes, parking brakes, troubleshooting			akes, parking brakes, troubleshooting
diagnosis. ABS a	and EBD.		
STEERING SYS	TEMS: Types of steering systems	, correct ste	ering angle, cornering force, under
steer and over st	eer. Types of steering gear; rack a	and pinion, r	ecirculating type etc. Power steering.
	Unit III		10 Hours
TRANSMISSION	I SYSTEMS:		
CLUTCH: Purpos	se, requirements, materials, types	of clutches;	single plate, multi-plate, diaphragm,
centrifugal, semi	-centrifugal, vacuum, hydraulic clu	tch. Trouble	shooting diagnosis. GEAR BOX:
Purpose, types o	f gear box; sliding mesh, constant	mesh, sync	hromesh and epicyclic gear box. Gear
box lubrication, g	jear ox troubles. Automatic transm	iission; signi	ficance and types.
	Unit IV		10 Hours
SUSPENSION S	YSTEMS:		

Purpose, types of springs; coil springs, leaf springs, torsion bar, helper springs, rubber springs. Independent suspension; advantages and types. Shock absorbers. Stabilizer bars. Active suspension. Trouble shooting.

WHEELS AND TYRES:

Wheels; types and materials.

Tyres; Tubed and tubeless tyres; advantages. Tyre materials, desirable tyre properties, aspect ratio, nomenclature, factors affecting tyre life and tyre rotation.

Reference books:

- 1. Kirpal Singh, Automobile Engineering Vol. 1 & 2
- 2. Mathur and Sharma, IC Engines

Sub. Code	UBT632N	Subject	Environmental Technology
Offering	Biotechnology	Faculty	Prof. Madhumala Y
Department			
Brief description	on of the course:	I	
It covers Bio	accumulation, Bioremediation	on, Biolead	ching, Biomining, Solid waste
management, \	Waste water treatment, Biofuel	S	
	Unit I		10 Hours
Introduction			
Current Enviro	onmental Issues and scope	of Enviro	nmental science and technology.
Biogeochemica	l role of soil microorganisms. Bi	oconcrete.	Environment Impact Assessment
Bioaccumulatio	on of toxicants		
Characteristics	of Xenobiotics, Relationship of	of Bioaccu	mulation with Chemical Structure,
Ecophysiology	of Bioaccumulation, Proces	s of tox	icants uptake, Factors affecting
bioaccumulatic	on, measurement of bioaccumu	lation.	
Sustainable fut	ure: Green building concept, Ca	arbon foot	print, crediting, trading and its
calculation, Wa	ter foot print. Rain water harve	sting.	
	Unit II		10 Hours
Waste water tr	eatment		
Waste water	characteristics BOD, COD, Pri	mary & S	econdary treatment, nanofiltration,
ultrafilt ratio	n and microfiltration. M	icrobial	removal of phosphorous and
Nitrogen.Waste	ewater treatment of industries	like sugar f	actories, food industries, beverages
industries, and	distilleries.		
Solid waste ma	inagement		
Basic aspects,	general composition of muncip	al solid wa	astes, aerobic treatment, anaerobic
treatment, bio	ogas generation; Solid waste r	manageme	nt. Hazardous wastes, Biomedical
wastes, E waste	e. MoEF rules.		
	Unit III		10 Hours
Bioleaching &b	iomining		
Microbes in B	ioleaching- types, methods o	f bioleach	ing, Microbial recovery of metal,
phosphate, pe	troleum.		

Bioremediation

Major contaminants of air, water and soil, Biomonitors of environment (Bioindicators),

Bioremediation using microbes, Phytoremediation, Biofilms its applications. Bio-stimulation of Naturally occurring microbial activities, Bio-augmentation.

Unit IV	10 Hours

Biofuels

Definition, Renewable and non renewable resources. Advantages and disadvantages of biofuels. Biofuel feed stocks-sugar, starch, cellulose, lipid. Types of biofuel- first, second and third generation. Technologies for bio-fuel production–transesterification, gassification. 2G technology, Biomethanation. Issues of biofuel production and its use. Microbial fuel cells. **Biodiversity:** Value of biodiversity, threats to biodiversity, approaches of biodiversity conservation.

Text Books:

- 1. Text Book of Environmental Biotechnology by Pradipta Kumar Mahopatra,2006.
- 2. Text book of Microbiology by R C Dubey and D K Maheshwari,2013

Reference books:

- 1. Environmental Biotechnology, A Biosystems ApproachDe Vallero, 2010
- 2. Comprehensive Biotechnology Vol. 1- 4: M.Y. Young (Eds.), Pergamon Press 2004
- 3. Environmental Biotechnology by Vallero, Elsevier Science, 2010
- Biotechnology, Economic & Social Aspects : E.J. Dasilva, C Ratledge& A Sasson, Cambridge Univ. Press, 2003

Sub. Code	UCV634N	Subject	Groundwater
Offering	Civil Engineering	Faculty	Prof. S. M. Kalagudi
Department			
Brief description	on of the course:	I	
The objective t	his course is to appreciate grou	undwater a	as an important natural resource on
the planet ear	th, general factors controlling	its occu	rrence and distribution in different
areas. Focuses	on groundwater exploration, o	quality, po	llution, recharge, development and
management.			
	Unit I		10 Hours
Introduction:			
Hydrology, hydi	rogeology, groundwater, scope,	historical l	packground, sources of
groundwater, ir	nportanceof groundwater, grou	indwater re	esources, groundwater
development ir	n India, groundwater potential i	n India, gro	oundwater in hydrological cycle,
origin and age	of groundwater.		
	Unit II		10 Hours
Occurrence	of Groundwater: Roc	k and	soil properties affecting
groundwateroccurrence, vertical distribution of groundwater, Aquifers – types of aquifers,			
geological form	ations as aquifers. Springs, hot	springs- ge	eothermal energy sources.
	Unit III		10 Hours
Groundwater	Exploration: Geological and	hydrologi	cal methods, surface geophysical
methods – elec	trical resistivity method. Water	r wells – ty	pes of wells – dug wells, bore wells,
driven wells, je	tted wells.		
Quality of Gro	undwater: Natural groundwat	er quality,	principal chemical constituents in
groundwater, s	sources of salinity, quality crite	eria for gro	oundwater use – domestic use, live
stock use, irriga	ation use and industrial use.		
	Unit IV		10 Hours
Groundwater	Recharge: Methods of artifici	al recharg	e of groundwater and rain water
harvesting.			
Groundwater pollution and Legislation: Sources and nature of pollution, detection and			
prevention, sal	ine water intrusion.		

Groundwater management and conjunctive use.

Text Books:

- Groundwater Hydrology by David Keith Todd, Third Edition, John Wiley & Sons, New York. 2./willey India Pvt.Ltd, New Delhi.
- 2. Groundwater by H. M. Raghunath, Third Edition, New Age International Publishers, New Delhi.
- Groundwater Assessment and Management' by Karanth K R, Tata McGraw Hill Ltd. Publishing Co. Ltd., New Delhi.
- 4. Engineering and General Geology by Parbin Singh, Eighth revised Edition, S.K. Kataria and Sons, New Delhi.

Reference books:

1. Groundwater Hydrology by Bower, John Wiley & sons. New York.

- 2. Groundwater System Planning & Management R. Willes& W. W. G. Yeh, Prentice Hall.
- 3. Applied Hydrogeology by C. W. Fetter, CBS Publishers & Distributer. New Delhi.
- 4. Fundamentals of Hydrogeology by Sanjay Akhauri., Zorba Books.com

Sub. Code	UCV 633N	Subject	Air Pollution and Control
Offering	Civil Engineering	Faculty	Dr G.B.Megeri
Department			
Brief description	on of the course:		
The objective of	of the course is to impart the	knowledge	e and understanding of causes and
effects of air p	ollution and their controlling n	nechanism	s. The course will provide a deeper
understanding	of air pollutants, pollution inve	entory and	modelling. The course also imparts
knowledge on	the impacts of air pollution on	different a	spects such as policy, human health
and various cor	ntemporary technological innov	ation for b	etterment of air quality.
	Unit I		10 Hours
Introduction:			
Definition Cou	were clear frontion and chan		of sin well-tents. Effects of sin
Definition, Sol	irces, classification and chara	acterization	of air poliutants. Effects of air
pollution on ne	aith, vegetation & materials. Al	imosphere	
			10 Hours
Meteorology:			
Temperature	lapse rate & stability, winc	d velocity	& turbulence, plume behavior,
measurement	of meteorological variables, w	ind rose d	iagrams, Plume Rise, estimation of
effective stack	height and mixing depths. I	Developme	nt of air quality models-Gaussian
dispersion mod	lel		
	Unit III		10 Hours
Sampling:			
Sampling of pa	articulate and gaseous polluta	ints (Stack	, Ambient & indoor air pollution),
Monitoring and	analysis of air pollutants (PM2	2.5, PM10,	SO _x , NO _x , CO, NH ₃)and Air pollution
emission stand	ards		
	Unit IV		10 Hours
Control Techni	ques:		
		the index	in Derticulate method and accord
pollutants- se	ttling chambers, cyclone sep	barators, s	crubbers, fliters & ESP.Including
Numerical prob	olems		
Text Books:			

1. M. N. Rao and H V N Rao, "Air pollution", Tata Mc-Graw Hill Publication.

2. H. C. Perkins, "Air pollution". Tata McGraw Hill Publication

3. Mackenzie Davis and David Cornwell, "Introduction to Environmental Engineering" McGraw-Hill Co.

Reference Books:

1. Noel De Nevers, "Air Pollution Control Engineering", Waveland Pr Inc.

2. Anjaneyulu Y, "Text book of Air Pollution and Control Technologies", Allied Publishers

Sub. Code	UCS632N	Subject	Artificial Intelligence and Robotics
Offering	Computer Science	Faculty	Dr. Sanjeevakumar M. Hatture
Department	and Engineering		

Artificial Intelligence(AI) is the activity devoted to making machines intelligent i.e. a major step forward in how computer system adapts, evolves and learns. The robotics will provide the insight into different sensors and actuators for designing and control operations. AI and robotics has widespread applications in almost every industry and is considered to be a big technological shift, similar in scale to past events such as the industrial revolution, the computer age, and the smart phone revolution. This course will give an opportunity to gain expertise in fascinating and fastest growing areas of AI and robotics that covers topics related to human intelligence and its applications in industry, defence, healthcare, agriculture and many other areas. This course will give the students a rigorous, advanced and professional graduate-level foundation in the area of Artificial Intelligence and Robotics.

Unit I	10 Hours
1. What is AI? The AI Poblems, Underlying a	issumptions, AI technique, Level of the model,
Criteria for success (1.1to 1.5 from Rich and	Knight)
2. Problems, problem spaces and search Pro-	oblem as a state space search, Production
systems, Problem characteristics, Produc	tion system characteristics, Issues in the design
of search problems, additional problems	(2.1 to 2.6 from Rich and Knight)
Unit II	10 Hours
3. Using predicate logic Representing simpl	e facts in logic, representing instance and is-a
relationships, computable functions and pre	edicates, resolution, natural deduction
(5.1 to 5.5 from Rich and Knight)	
4. Search and control strategies Introduction	on, Generate and Test, Hill Climbing, Simulated
annealing(3.1, 3.2 from Rich and Knight)	
Unit III	10 Hours
5. Introduction: What Is a Robot Anyway?:	The Seven Criteria of Defining a Robot, Robot
Categories, Sensors, Actuators, End Effector	s, Controllers, Scenario, Giving the robot
instructions.	
Robot Vocabularies and RSVP: Additional E	Effort. Actions. The Autonomous Robot's ROLL

Model, RSVP (Robot Scenario Visual Planning): Mapping the Scenario, Pseudocode and Flowcharting RSVP

	Unit IV	10 Hours
7 . A c	ctual Capabilities of Robot: The Reality Ch	eck for the Microcontroller, Sensor
Real	ity Check, Determine Your Robot's Sensor	, Limitations, Actuators End-Effectors
Real	ity Check.	
8. Se	ensors: Types of Sensors, Sensor Interfaci	ng with Microcontrollers, Attributes of
Sens	ors, Sensor Calibration.	
9. Pro	gramming the Robot's Sensors: Color Sen	sor, Ultrasonic Sensor, Compass Sensor
Text E	Books:	
1.	Artificial Intelligence Elaine Rich, Kevin	Knight and Shivashankar B. Nair TMH
	Education (P) Ltd., New Delhi 3 rd Edition	n, 2010
2.	Robot Programming: A Guide to Contro	Illing Autonomous Robots Cameron Hughes
	Tracey Hughes Pearson Education 1 st Ec	lition, 2016
	Reference books:	
1.	Artificial Intelligence: A modern appro	ach Stuart Russell and Peter Norvig Pearson
Educa	ation, India 3 rd Edition	
2.	Artificial Intelligence Saroj Kaushik Ceng	age Learning India 1 st Edition, 2011
3.	Introduction to AI Robotics Robin R. Mu	rphy MIT Press 1 st Edition, 2000
4.	Introduction to Robotics Saha S. K. TMF	Publications 1 st Edition, 2008

Sub. Code	UCS631N	Subject	Machine Learning Using Python
Offering	Computer Science and	Faculty	S. S. Yendigeri
Department	Engineering		

Machine Learning, which is a subset of Artificial Intelligence (and in turn a subset of Data Science) is an up and coming field of study which is revolutionizing the way companies analyze and derive conclusions from their data. Companies from various domains have seen huge increases in revenue and profit after adopting ML to reinforce their business decision making. Hence, the demand for capable data scientists and engineers is at an all time high regardless of their original specialization. While CS and IS students are familiar with ML, it's still a mysterious topic to students of other branches. Through this course, I intend to demystify and introduce them to the exciting world of machine learning to non CS/IS students and hopefully set them up for a rewarding and lucrative career in their future.

Unit I	10 Hours
Introduction:	
What is Machine Learning? Python: Introdu	uction, Data Types, Conditional statements,
loops, functions, scikit-learn.	
Essential Libraries and Tools: Jupyter Notebo	ook, Numpy, Pandas, Scipy, matplotlib, A
First Application: Classifying Iris Species.	
Unit II	10 Hours
Supervised Learning: Classification and	Regression, Generalization, Overfitting, and
Underfitting, Supervised Machine Learning	Algorithms: Some Sample Datasets, k-Nearest
Neighbors, Linear Models, Naïve Bayes Cla	assifiers, DecisionTrees, Neural Networks (Deep
Learning).	
Unit III	10 Hours
Unsupervised Learning and Preprocessing	: Types of Unsupervised Learning, Challenges in
Unsupervised Learning, Preprocessing an	d Scaling, Dimensionality Reduction, Feature
Extraction, and Manifold Learning, Clusterin	g: k-Means Clustering, Agglomerative Clustering
Unit IV	10 Hours
Model Evaluation and Improvement: Cr	oss-Validation, Evaluation Metrics and Scoring.
Working with Text Data: Types of Data	Represented as Strings, Example Application:
Sentiment Analysis of Movie Reviews, Rep	resenting Text Data as a Bag of Words: Applying
Bag-of-Words to a Toy Dataset, Bag-of-Wor	ds for Movie Reviews, Stopwords.
Text Books:	
 Introduction to Machine Learning wi Oreilly Publication 1stEdition, 2016 	th Python Andreas C. Müller & Sarah
2. Introduction to Python Gourishanka	S. CSC Press 1 st Edition

Reference books:

- 1. Core Python Programming Dr. R. Nageshwar Rao Dream Tech Press 2nd Edition, 2018
- 3. Machine Learning Tom Mitchell McGraw-Hill 2nd Edition, 2013
- 4. Building Machine Learning Systems with Python Luis Pedro Coelho And Willi Richart PACKT Publication 2nd Edition,2013

Sub. Code	UEE655N	Subject	Renewable Energy Sources
Offering	Electrical and Electronics	Faculty	Sunita S Tambakad
Department	Engineering		

Renewable energy and its impact on the environment is a topic that's been on everyone's minds in recent years not only because it's at the forefront of many political and social conversations worldwide, but because it is an issue so many people feel passionate about. Renewable energy is energy that is collected from natural sources that can't be depleted such as sunlight, wind, and hydropower. And since these natural sources aren't going anywhere anytime soon, using them to generate power is not only reliable but is eco-friendly, too. Plus, these types of alternative energy sources don't typically produce any negative byproducts like those produced when burning fossil fuels for energy, which causes serious harm to the environment.

Unit I 10 Hours
Introduction to Energy Sources: 02Hrs
Classification of Energy Resources; Conventional Energy Resources – Availability and their
limitations; Non-Conventional Energy Resources- Classification, Advantages,
Limitations; Comparison of Conventional and Non-Conventional Energy Resources.
Solar Energy Basics: 04Hrs
Introduction, Solar Constant, Basic Sun-Earth Angles – definitions and their
representation, Solar Radiation Geometry (only theory); Measurement of Solar Radiation
Data – Pyranometer and Pyrheliometer.
Solar Thermal Systems: 04Hrs
Principle of Conversion of Solar Radiation into Heat, Solar Water Heaters (Flat Plate
Collectors), Solar Cookers – Box type, Concentrating dish type; Solar driers, Solar Still.
Unit II 10 Hours
Solar Electric Systems:05Hrs
Solar Thermal Electric Power Generation – Solar Pond and Concentrating Solar Collector
(parabolic trough, parabolic dish, Central Tower Collector). Advantages and
Disadvantages; Solar Photovoltaic – Solar Cell fundamentals, module, panel and array.
Solar PV Systems – Street lighting, Domestic lighting and Solar Water pumping systems.
Wind Energy: 05Hrs
Wind and its Properties, History of Wind Energy. Basic principles of Wind Energy Conversion

Systems (WECS), Classification of WECS, Parts of a WECS, Derivation for Power in the		
wind, Advantages and Disadvantages of WECS		
Unit III 10 Hours		
Biomass Energy: 05Hrs		
Introduction, Photosynthesis process, Biomass conversion technologies; Biomass		
Gasification – Principle and Working of Gasifiers, Biogas - production of biogas, factors		
affecting biogas generation, types of biogas plants-KVI Cand Janata model.		
Geothermal Energy: 05Hrs		
Introduction, Geothermal resources (brief description); Advantages and disadvantages;		
Applications of Geothermal Energy.		
Unit IV 10 Hours		
Energy from Ocean: 06Hrs		
Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP),		
Classification of Tidal Power Plants, Advantages and Limitation of TPP.		
Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC		
power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid		
cycle (block diagram description of OTEC); Advantages and Limitation of OTEC.		
Emerging Technologies: 04Hrs		
Fuel Cell, Wave Energy. (Principle of Energy generation using block diagrams, advantages		
and limitations).		
lext Books:		
1. Khan, B. H., Non-Conventional Energy Resources, TMH, New Delhi, 2006.		
2. Rai, G. D., Non-Conventional Sources of Energy, IV- Edition, Khanna Publishers,		
Delhi, 2007		
Reference books:		
1. Mukherjee, D., and Chakrabarti, S., Fundamentals of Renewable Energy Systems, I		
Age International Publishers, 2005.		
2. Tiwari, G. N., and Ghosal,M.K., Renewable Energy Sources: Basic Principles		

Applications, Alpha Science International, Ltd., New Delhi, 2006.

Sub. Code	UEC634N	Subject	Modeling and Simulation of
			Engineering Systems
Offering	Electronics and	Faculty	Dr. B. G. Sheeparamatti
Department	Communication		
	Engineering		
Brief description	on of the course:		
Gist of the sub	ject: As an introductory course	e for mode	ling, simulation and analysis of real
life physical sys	stems containing individual or r	nixed mecl	nanical, electrical, thermal and fluid
elements. Simu	late and Analyze the developed	d models u	sing modeling and simulation tools.
	Unit I		10 Hours
Introduction to	Systems: Introduction, types,	properties	of systems, LTI Systems, Stability of
systems. Non li	near systems		
Mathematical	Modeling: Introduction, types of	of modeling	g, Abstraction, Linearity and
superposition,	balance and conservation laws	and the sys	stem, boundary approach. Basic
system elemen	ts in mechanical, electrical, flui	d, magnetio	c and thermal systems
	Unit II		10 Hours
Mathematical	Modeling of Basic Engineering	Systems:	Introduction, Differential equations
of basic engine	ering systems, Transfer function	ns, Block di	agram algebra, Signal flow graphs.
Lumped Para	meter Models: Mechanical	systems	(automobile suspension system,
accelerometer)	, translational, rotational (simp	ole rotatior	nal system). hydraulic systems (two
tank hydraulic	system), thermal systems (simple the	ermal system). Electrical Systems
(capacitor microphone).			
	Unit III		10 Hours
Analysis of Systems: Introduction, time domain analysis of first order and second order			
systems, Frequency response of Linear Time invariant systems: Bode plots, phase margin			
and gain margin, stability analysis: Routh Hurvitz criteria. Introduction to State space			

representation of systems.

Unit IV

10 Hours

Modeling and Simulation tools: Introduction, familiarization with modeling and simulation software, Simulation and analysis of mathematical models developed. Introduction to non-linear systems and linearization. Curve fitting in system modeling.

Reference books:

- Mukherjee A. and Karmakar R. 'Modeling and Simulation of Engineering Systems through Bondgraphs' - Narosa – 2000
- I J Nagrath, M Gopal Control Systems Engineering, New Age International Publishers, Fifth Edition, 2007
- 3. O. Beucher and M. Weeks Introduction to MATLAB and Simulink a project

Sub. Code	UEC635N	Subject	Image processing
Offering	Electronics and	Faculty	Dr. V. S. Jigajinni
Department	Communication Engineering		

About the subject:

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. It is a type of signal processing in which input is an image and output may be image or characteristics/features associated with that image.

Nowadays, image processing is among rapidly growing technologies. It forms core research area within engineering and computer science disciplines too. Its helps for students to implement their final year projects.

Unit I	10 Hours

Introduction to Image processing: Fundamental steps in image processing; Components of image processing system; image sensing and acquisition; sampling and quantization; representation of digital images, image interpolation, Basic relationship between pixels; arithmetic and logic operations.

Unit II

Transformation and spatial filtering: Basics of intensity transformation and functions, Histogram Processing, equalization and histogram matching.Basics of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters. Image Restoration: Image Restoration: Image Degradation/Restoration Process, Noise Models.

Unit III 10 Hours

Restoration in the Presence of Noise Only-Spatial Filtering, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Color image processing: fundamentals, color models pseudo colour image processing, colour transformations.

Unit IV

10 Hours

10 Hours

Image Compression: Fundamentals, Image Compression Models and methods: Huffman coding, Golomb coding, arithmetic coding, LZW coding JPEG, predictive coding. Digital watermarking Applications in satellite, sonar, radar, medical areas and process industries.

Text Books:

1. R. C. Gonzalez, R. E. Woods, "Digital Image processing", Addison Wesley/ Pearson education, New Delhi, India, 3rd edition, 2002.

Reference books:

1.A. K. Jain, "Fundamentals of Digital Image processing", Prentice Hall of India, New Delhi, 2nd Edition, 1997.

2. Rafael C. Gonzalez, "Digital Image processing using MATLAB", Richard E. Woods and Steven Low price Edition, Pearson Education Asia, India, 2nd Edition, 2004.

3. William K. Pratt, "Digital Image Processing", John Wiley & Sons, New Delhi, India, 3 rd edition, 2004.

4. Arthur R. Weeks, Jr, "Fundamentals of Electronic Image Processing", SPIE Optical Engineering Press, New Delhi, India, 2nd Edition, 1996.

5. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", Tata

McGraw-Hill Education.

Sub. Code	UEI631N	Subject	INSTRUMENTAL METHODS OF
			ANALYSIS
Offering	Electronics and	Faculty	Dr. K. Bhat
Department	Instrumentation Engg.		
Brief descript	ion of the course:	1	
Syllabus deal	s with principle of work	ing, construc	tion and application of analytical
instruments	and methods for the a	nalysis of ga	aseous/liquid/solid samples. These
instruments w	ork on physical, chemical ar	nd physico-che	emical principles
	Unit I		10 Hours
Introduction	: Analytical methods,	Electromagn	etic Spectrum: Properties of
electromagn	etic radiation and intera	ction with	matter. Molecular Spectroscopy:
Measuremer	nt of transmittance and abs	orbance, Bee	r Lambert's law and its limitations,
Components	of analytical instruments	: Sources of	radiation, Wavelength selectors,
Sample cont	ainers, Detectors. UV-Visib	le Absorptior	Spectrometry: Single and double
beam absorp	tion instruments, Applicatio	n for qualitati	ve and quantitative analysis.
	Unit II		10 Hours
IR Absorptio	on Spectrometry: Basic c	omponents o	of IR instruments, Non-dispersive
spectromete	rs: Filter photometers, P	hotometers	without filters, Filter correlation
analyzers.	Mass Spectrometry: Feato	ures of mas	s spectroscopy, Components of
spectromete	rs: Sample inlet systems, E	lectron impac	tion source, Mass analyzers-Single
focus and do	uble focus magnetic sector	analyzer, Qua	adrupole analyzer and time of flight
(TOF) analyze	er, Applications.		
	Unit III		10 Hours
Atomic Spec	troscopy: Principles of AAS	5, AES and AF	S, Sample atomization techniques,
Atomic abs	orption instrumentation,	Applications.	X-ray Techniques: Introduction,
Principles,	Sources, Detectors, Inst	trumentation,	X-ray absorption method -
Absorptiome	ter, X-ray fluorescence me	ethod-Energy	dispersive type, X-ray diffraction-
powder diffraction method and applications.			
	Unit IV		10 Hours
Chromatogra	aphy: Introduction, Classi	fication, Gas	chromatography: Principle, GLC
instrumentat	ion, Liquid chromatography	: Scope and H	HPLC instrumentation, Applications.
NMR Spectroscopy: Principles of NMR spectroscopy, Different types of NMR instruments:			

FT – NMR, Carbon-13 NMR, Applications.

Text Books:

- Douglas A. Skoog, James Holler, Stanley R. Crounch, "Instrumental Analysis", Cengage Learning Publication, 2007.
- 2. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, "Instrumental Methods of

Analysis", 7th Edition, CBS Publishing and Distribution, 1986.

Reference books:

1 R. S. Khandpur, "Hand Book of Analytical Instrumentation", TMH, 1989.

OfferingIndustrial and ProductionFacultyDr C. M. JavalagiDepartmentEngineeringImage: Comparison of the second se	Sub. Code	UIP635N	Subject	MATERIALS MANAGEMENT
Department Engineering	Offering	Industrial and Production	Faculty	Dr C. M. Javalagi
	Department	Engineering		

Materials Management:

The need for materials management was first felt in manufacturing undertakings. The servicing organizations also started feeling the need for this control. And now even non-trading organizations like hospitals, universities etc. have realized the importance of materials management. Every organization uses several materials. It is necessary that these materials are properly purchased, stored, and used.

Any avoidable amount spent on materials or any loss due to wastage of materials increases the cost of production. The object of materials management is to attack materials cost on all fronts and to optimize the overall end results. It is the control of materials in such a manner that it ensures maximum return on working capital.

Defn.: "Material management is the planning, directing, controlling and co-ordination of all those activities concerned with material and inventory requirements, from the point of their inception to their introduction into manufacturing process."

"Material management is the integrated functioning of the various sections of an organization dealing with the supply of materials and allied activities in order to achieve maximum co-ordination."

Importance of Material Management:

Material management is a service function. It is as important as manufacturing, engineering, and finance. The supply of proper quality of materials is essential for manufacturing standard products.

The importance of material management may be summarized as follows:

1. The material cost content of total cost is kept at a reasonable level. Scientific purchasing helps in acquiring materials at reasonable prices. Proper storing of materials also helps in reducing their wastages. These factors help in controlling cost content of products.

2. The equipment is properly utilized because there are no break downs due to late supply of materials.

3. The wastages of materials at the stage of storage as well as their movement is kept under control.

7. The investments on materials are kept under control as under and over stocking is

avoided.

8. Congestion in the stores and at different stages of manufacturing is avoided.

Materials Management is studied in four major areas and they are:

1. Integrated concept of materials management and its importance in the corporate world.

2. Purchasing and warehouse management

3. Inventory management

4. Various methods to enhance function of materials management

Unit I	10 Hours

Integrated Materials Management: Importance, Need for integrated concept, Definition and scope, Advantages. Advantages of Integrated Materials Management Concept

Corporate Policy and Materials Management: General corporate policy, Scope, make or buy, Quality requirements, Quantity requirements.

Materials Research-Need and Importance, Definition and Scope, Organization for

Materials Research, Techniques and Reporting

ABC Analysis: What is ABC Analysis-Advantages of ABC Analysis, Mechanics of ABC

Analysis, Purpose of ABC Analysis,

Objective of ABC Analysis, Limitations of ABC Analysis.

Unit II 10 Hours
Codification and Standardization: Nature of Codification, Process of codification, Kodak
System, Brisch System, Advantages of Codification, Need for Standardization,
Standardization in India, Importance of Standardization, Definition of Simplification,
Benefits of Standardization.
Purchasing Management: Creative Purchasing, Purchase Systems, Price Forecasting,
Buying Seasonal Commodities, Purchasing Under Uncertainty, Purchasing of Capital
Equipment, International Purchasing, Import Substitution: Prospects and Retrospect,
Public Buying Insurance Buying 10Hrs

Unit III	10 Hours	
Warehousing and Stores Management:	Stores Management, Stores Systems and	
Procedures, Incoming Materials Control,	Stores Accounting and Stock Verification,	
Obsolete, Surplus and Scrap Manager	nent, Value Analysis, Material Handling,	
Transportation and Traffic Management.		
Unit IV	10 Hours	

Inventory Management: Inventory Management in India, Economical Ordering Quantity, Practical Inventory Systems, Computers in Materials Management, Evaluation of Materials Management.

Reference books:

- Gopal Krishna P. and M. Sundaresan. Materials Management: An Integrated Approach, Prentice-Hall of India Private limited, NewDelhi, 2007, ISBN–978-81-203-0027-9.
- 2. Datta. A K.*Materials Management, Procedures, Text and Cases*.Prentice Hall of India Private limited, NewDelhi, 2000.
- 3. Materials Management Chtale
- 4. Materials Management by Arnold
- 5. Handbook of M. M. Gopalkrishnan

Sub. Code	UIS620N	Subject	JAVAPROGRAMMING
Offering	Information Science and	Faculty	R. B. Math
Department	Engineering		

Java is among the most popular programming languages, mainly because of how versatile and compatible it is. Java can be used for a large number of things, including software development, mobile applications, and large systems development. Most of the market share of all smart-phones run on Android, the mobile operating system is written in Java. Knowing Java opens a great deal of doors as a developer.

In this course students will be exposed to fundamental programming concepts, including object-oriented programming (OOP) using Java.

Unit I	10 Hours

Object-oriented Concepts

OOP Concepts: Procedural Programming, Problems with procedural programming, Objectoriented programming, P.O.P v/s O.O.P, OOP features Encapsulation, Inheritance, Polymorphism, etc., Benefits of OOP, Applications of OOP, Pure OOP languages-five rules, The 'Object' concept, ADT, Encapsulation and Information Hiding, Class v/s Object, Type and Interface, Instantiating classes, Interaction between objects, Association, Aggregation and Decomposition, Example, Generalization and Specialization.

Unit II	10 Hours
Introduction to Java	
Evolution of Java: Java's lineage, Creation of	f Java, How Java changed the internet,
Bytecode, Features of Java.	
An Overview of Java: Features of Java, First	simple program, Lexical Issues.
Data Types and Variables: The Primitive Typ	oes, Literals, Variables, Type Conversion and
Casting, Automatic Type Promotion.	
Operators: Arithmetic operator, Bitwise ope	erators, Relational operators, Boolean Logical
operators, Assignment operators, The'?' Operators	erator, Operator precedence.
Control Statements: Java's selection statement	nts, Iteration statements, Jump statements.
Unit III	10 Hours

Arrays, Classes Arrays: One-dimensional arrays, Multi-dimensional arrays.

Introducing Classes: Class fundamentals, Declaring Objects, Assigning object reference

variables, Introducing methods, Constructors, The 'this' keyword.

Methods and Classes: Overloading methods, Introducing Access control, Understanding static, Introducing final.

Unit IV

10 Hours

Inheritance and Threads

Inheritance: Inheritance basics- Member access and inheritance, Using super, Multi-level inheritance, Method overriding; Dynamic method dispatch, abstract classes, using 'final' with inheritance.

Multithreaded programming: The Java Thread model, The Main thread, Creating a thread, Creating multiple threads, Thread priorities, Synchronization, Inter-thread communication, Suspending, Resuming and Stopping threads.

Text Books:

1. The Complete Reference-Java, Herbert Schildt, 7thedition, McGraw Hill Publication.

2. Programming with Java–A primer, E. Balaguruswamy, 4th edition, McGraw Hill

Publication.

Reference books:

. Java for programmers, Paul J. Deitel and Harvey M. Deitel, Pearson Education.

2. Introduction to Java programming, Y. Daniel Liang, 7th edition, Pearson Education

Sub. Code	UIS002N	Subject	Database Management
			System
Offering	Information Science and	Faculty	Prof. P. V. Kulkarni
Department	Engineering		

Databases and database systems have become an essential component of everyday life in modern society. In the course of a day, most of us encounter several activities that involve some interaction with a database. For example, if we go to the bank to deposit or withdraw funds; if we make a hotel or airline reservation; if we access a computerized library catalog to search for a bibliographic item; or if we order a magazine subscription from a publisher, chances are that our activities will involve someone accessing a database. Even purchasing items from a supermarket nowadays in many cases involves an automatic update of the database that keeps the inventory of supermarket items. The above interactions are examples of what we may call traditional database applications, where most of the information that is stored and accessed is either textual or numeric. In the past few years, advances in technology have been leading to exciting new applications of database systems. Multimedia databases can now store pictures, video clips, and sound messages. Geographic information systems (GIS) can store and analyze maps, weather data, and satellite images. Data warehouses and on-line analytical processing (OLAP) systems are used in many companies to extract and analyze useful information from very large databases for decision making. Real-time and active database technology is used in controlling industrial and manufacturing processes. And database search techniques are being applied to the World Wide Web to improve the search for information that is needed by users browsing through the Internet.

Unit I

10 Hours

INTRODUCTION: Characteristics of database approach; Advantages of using DBMS approach; Usage of DBMS. Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

ENTITY-RELATIONSHIP MODEL: Using High-Level Conceptual Data Models for Database Design; An example database application; Entity types, Entity sets, Attributes and Keys; Relationship types, Relationship sets, Roles and Structural constraints; Weak entity types;

Refining the ER Design; ER Diagrams, Naming conventions and design issues.			
Unit II 10 Hours			
RELATIONAL MODEL AND RELATIONAL DATABASE CONSTRAINTS: Relational model			
concepts; Relational model constraints and Relational database schemas; Update			
operations, Transaction and dealing with constraint violations.			
SQL: data definition and data types; Specifying basic constraints in SQL; Schema change			
statements in SQL; Basic queries in SQL; More complex SQL queries. Insert, Delete and			
Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual			
Tables) in SQL;			
Unit III 10 Hours			
DATABASE DESIGN: Informal design guidelines for relation schemas; Functional			
dependencies; Normal forms based on primary keys; General definitions of second and third			
normal forms; Boyce-Codd Normal Form			
PROPERTIES OF RELATIONAL DECOMPOSITIONS: Algorithms for relational database Schema			
design; Multivalued dependencies and Fourth Normal Form; Join Dependencies and Fifth			
Normal Form.			
Unit IV 10 Hours			
TRANSACTION MANAGEMENT : Introduction to transaction processing; Transaction &			
system concepts; Desirable properties of transactions; Characterizing schedules based on			
recoverability; Characterizing schedules based on serializability; Transaction support in SQL;			
Transaction Control in SQL.			
Text Books:			
1. Fundamentals of Database Systems", Remez Elmasri & Shamkant B. Navathe, 5 th			
Edition, Pearson Education.			
2. "Oracle PL/SQL by Example", BENJAMIN ROSENZWEIG, ELINA RAKHIMOV, 5 th Edition,			
Pearson Education			
Reference books:			
1. Database Management Systems", Ramakrishanan Gehrke 3 rd edition, McGraw-Hill			
Higher Education;			

Sub. Code	UME642N	Subject	Finite Element Method
Offering	Mechanical Engineering	Faculty	Basavaraj R. Endigeri
Department			

The objective of the course is to appraise the students about the basics of the Finite Element Technique, a numerical tool for the solution of different classes of problems in solid mechanics. Different application areas will be dealt with after introducing the basic aspects of the method.

It is expected that once the students are exposed to the course, they will be in a position to solve any physical problem using Finite Element technique.

The target audience of the course is the Undergraduate students from Civil and Automobile Engineering

Unit I	10 Hours		
Introduction: Equilibrium equations in elas	sticity subjected to body force, traction forces,		
stress strain relations for plane stress a	and plane strain, Boundary conditions, Initial		
conditions, Euler's Lagrange's equations of	bar, beams, Principle of a minimum potential		
energy, principle of virtual work, Rayleig	gh-Ritz method Galerkins method and Matrix		
techniques . Basic Procedure: General descr	iption of Finite Element Method, , Discretization		
process; types of elements 1D, 2D and 3D e	lements, size of the elements, location of nodes,		
node numbering scheme, half Bandwidth, Stiffness matrix of bar element by direct method,			
Properties of stiffness matrix, Preprocessing, post processing. Engineering applications of			
finite element method. Advantages & Disadvantages of FEM.			
Unit II	10 Hours		
Interpolation Models: Polynomial form of interpolation functions- linear, quadratic and			
cubic, Simplex, Complex, Multiplex element	nts, Selection of the order of the interpolation		
polynomial, Convergence requirements,	static condensation. penalty approach and		

elimination method. One-dimensional bar element: Recall of 1D linear bar element. Lagrangian interpolation, Higher order one dimensional elements- quadratic, Cubic element and their shape functions, properties of shape functions, Effect of temperature on 1D elements and stress calculation..

U	nit	Ш
-		

TWO dimensional elements: Shape functions and stiffness matrix of 2D elements four-Node quadrilateral, Nine-Node quadrilateral Eight-Node quadrilateral, serendipity and lagrange comparison with 2D pascals triangle. CST and LST shape functions, jacobian matrix, stiffness matix, force terms, stress calculation and Numerical integration. Introduction to 3-D elements shape function of tetrahedron element.

Unit IV

10 Hours

TRUSSES AND BEAM ELEMENTS: Analysis of trusses and beam elements its shape functions, stiffness matrix and stress calculation

Text Books:

1. Finite Elements in engineering, Chandrupatla T.R., 3rd Pearson Edition.

2. Finite Element Analysis, C. S. Krishnamurthy,–Tata McGraw Hill Publishing Co. Ltd, New Delhi, 1995.

3. "Fundamental Finite Element Analysis and Application" by "Asghar Bhatti" by Page Turner 2013.

4. "Advanced Topics in Finite Element Analysis of Structures with Mathematica and MATLAB Computations" by M. Asghar Bhatti by Page Turner 2013.

Reference books:

1. The FEM its basics and fundamentals: O. C. Zienkiewicz, Elsevier.

2. Finite Element Method, J. N. Reddy, McGraw –Hill International Edition.

3. Finite Element Methods, by Daryl. L. Logon, Thomson Learning 3rd edition, 2001.

4. Finite Element Analysis, by H.V. Lalshminarayana, universities press, 2004.

Sub. Code	UME639N	Subject	Product Design & Rapid Prototyping
Offering	Mechanical Engineering	Faculty	S C Yali
Department			

Product Design is related to all the work that is done between an idea coming to mind and finally seeing the product in the hands of the customer. Product Design course provides education of designing a product from the idea. The process often involves figuring out what is required, brainstorming possible ideas, creating mock prototypes and then generating the product. Product design is concerned primarily with the relationship between products, systems and those who use them. This course is theoretical and interdisciplinary (open for all branch).

Unit I

10 Hours

Introduction : Definition , importance of PD, Objectives of PD, essential requirements of PD, who designs product, Project team, steps in new PD, Characteristics of successful product development, duration and cost of product development , challenges of product development, Design for manufacture, remanufacturing , sequential and concurrent engineering .
 6 Hours

Design for manufacture & assembly: Design for Manufacture and Assembly, History, Implementation of Design for Assembly, Design for Manufacture, How Does DFMA Work, Advantages of Applying DFMA during Product Design, design for Maintainability, Design for Environment Design for safety, Vision and Illumination design

Unit II	10 Hours
Development processes and organizations	A generic development process, Usefulness of a
well-defined Development Process, task	& responsibilities for marketing, design and
manufacturing , concept development: the	ront end process, adopting the generic product
development process, process flow diagram	n for variant of products, product development
organizations (functional, project & matrix)	

Unit III

10 Hours

Introduction: Prototype fundamentals, definition of Prototypes, types of prototypes, need for the compression in product development, RP fundamentals , RP wheel, history of RP systems, applications of RP, growth of RP industry, basic principle of rapid prototyping

processes, classification of RP systems. advantages and disadvantages of rapid prototyping **Stereolithogrphy systems:** principle, process details , advantages and disadvantages, applications

10 Hours

Selective Laser sintering: principle, process details, advantages and disadvantages, applications

Fused deposition modelling: principle, , process details , advantages and disadvantages, applications

Laminated object manufacturing : principle, process details, LOM materials advantages and disadvantages, applications

Solid Ground curing: principle of operation , machine details, advantages and disadvantages, applications

Text Books:

1. Product design & development by Karl T Ulrich and Steven D Eppinger

2. Rapid Prototyping principles and applications by C K Chua, K F Leong and C S Lim

Reference books:

1. The design of everyday things by Don Norman

2. Product designs from concept to Manufacture by Jennifer Hudson

3. Additive manufacturing by Brent Stucker, David W. Rosen, and lan Gibson

4. Engineering design and rapid prototyping by Ali K. Kamrani and Emad Abouel Nasr

Sub. Code	UBA631N	Subject	CORPORATE	
			COMMUNICATION	
Offering Department	Master of Business	Faculty	Vaibhav Deshpande	
	Administration			
Brief description of the	course: Corporate Com	munication cov	ers introductory concepts of	
communication, channed	els and objectives of	communication	, methods and modes of	
communication, and bu	siness letters. Syllabus i	is framed in su	ch a way that students will	
learn the subject throug	h classroom teaching and	d through activi	ties and case studies.	
U	Unit I 10 Hours			
Meaning, Definition, Pro	cess, Need, Feedback, E	mergence of Co	mmunication as a key	
concept in the Corporate	e and Global world, Impa	ct of technolog	cal advancements on	
Communication				
U	nit II	10	Hours	
Channels and Objective	es of Communication			
Channels-Formal and I	nformal—Vertical, Horiz	ontal, Diagona	l, Grapevine, Objectives of	
Communication, Inform	mation, Advice, Order	and Instruction	n, Persuasion, Motivation,	
Education, Warning, an	d Boosting the Morale c	of Employees (A	brief introduction to these	
objectives to be given)				
Unit III 10 Hours				
Methods and Modes of	f Communication			
Methods: Verbal and N	onverbal, Characteristics	s of Verbal Com	munication, Characteristics	
of Non-verbal Comm	nunication, Business E	tiquette Mod	es: Telephone and SMS	
Communication) Facsimile Communication (Fax) Computers and E-communication, Video				
and Satellite Conferencing. Problems in Communication /Barriers to Communication-				
Physical/ Semantic / Language/ Socio-Cultural /Psychological /Barriers, Ways to Overcome				
these Barriers				
Unit IV 10 Hours				
Business Correspondence				
Order, Credit and Status Enquiry, Collection (just a brief introduction to be given) Only				
following to be taught In detail: Letters of inquiry, Letters of Complaints, Claims,				
Adjustment, Sales Letters, promotional leaflets and fliers Consumer Grievance Letters.				
Presentation skills: W	Presentation skills: What is a presentation – Elements of presentation –			

Designing & Delivering Business presentation advanced visual support for manager.

Text Books:

- 1. Balan, K. R. and Rayudu C. S. (1996) Effective Communication, Beacon NewDelhi
- 2. Bangh, L Sue, Fryar, Maridell and Thomas David A. (1998) How to Write First Class Business Correspondence, N.T.C. Publishing Group USA.
- 3. Bhargava and Bhargav, Company Notices, Meetings and Regulations
- 4. Ghanekar. A (1996) Communication Skills for Effective Management Everest Publishing House, Pune.